LABORATORIO DE CIRCUITOS ELÉCTRICOS DE CORRIENTE ALTERNA

Clave: 1131071

ÁREA DE INGENIERÍA ENERGÉTICA Y ELECTROMAGNÉTICA ∇^2 Prof. Dr. Víctor Manuel Jiménez Mondragón e-mail: vmjm1986@gmail.com

Práctica 1: Ondas de Voltaje Alterno Senoidal

IEE

 ${\rm IEE}$

1. Objetivos

- Aprender a utilizar el equipo eléctrico de medición de C.A.
- Analizar la forma de onda de la tensión de distribución en México.
- Identificar los elementos principales de la onda de voltaje.
- Medir el desfasamiento entre ondas de voltaje de un sistema trifásico.

2. Cuestionario Previo

En esta sección se presenta un cuestionario necesario para el desarrollo de la Práctica 1.

- 1. ¿Cuáles son las características de una onda de voltaje alterno senoidal?
- 2. ¿Cuál es la frecuencia del voltaje que se utiliza en la generación, transmisión y distribución de energía eléctrica en México?
- 3. ¿Qué se entiende por desfasamiento de las ondas de voltaje?
- 4. ¿Por qué en la generación, transmisión y distribución de energía eléctrica se utilizan voltajes alternos senoidales?
- 5. ¿Cuál es la relación entre el la amplitud de una senoidal y su valor eficaz (RMS, por sus siglas en inglés)?
- 6. ¿Cuál es la relación entre el voltaje de fase y el voltaje de línea en un sistema trifásico?

3. MATERIAL Y EQUIPO

En la Tabla 1 se muestra el material y equipo necesario para la realización de la práctica. El material se debe solicitar al técnico de laboratorio en turno, el equipo se debe tomar de los estantes en el laboratorio.

Tabla 1. Material y equipo a ser empleado		
Cantidad	Material	
1	Osicloscopio	
2	Puntas de osciloscopio atenuadas	
2	Juegos de puntas	
2	Multímetros digitales	
1	Adaptador 3 a 2 (flotador)	
Cantidad	Equipo	
1	Fuente de tensión trifásica	

Tabla 1: Material y equipo a ser empleado

4. Desarrollo Experimental

En esta sección se describen los pasos a seguir para el desarrollo de la práctica.

4.1. Características del voltaje de fase

- 1. Encender la fuente utilizando la tensión de corriente alterna fija de 120 V.
- 2. Conectar el osciloscopio utilizando el flotador y encenderlo.
- 3. Conectar la punta del osciloscopio con una atenuación ×10 en alguna fase (AN,BN o CN), como se muestra en la Figura 1, y determinar los parámetros de la onda. Registrar estos parámetros en la Tabla 2.

Figura 1: Conexión del osciloscopio a las fases de la fuente.

4. Con el multímetro medir la tensión de fase a neutro para las fases AN, BN y CN. Comparar los resultados con los obtenidos en el osciloscopio (valores RMS).

5. Repetir los pasos anteriores para las otras dos fases.

		v
Parámetro		Valor Medido
Frecuencia	[Hz]	
Periodo	[s]	
Valor pico	[V]	
Valor eficaz (oscilocopio)	[V]	
Valor eficaz (multímetro)	[V]	

Tabla 2: Variables medidas del voltaje senoidal.

4.2. Características del voltaje de línea

- 1. Utilizar dos puntas del osciloscopio para capturar las señales de voltaje simultáneamente en sus dos canales, como se muestra en la Figura 2.
- 2. Determinar el ángulo de desfasamiento entre las fases AN-BN, BN-CN y CN-AN. Comente ampliamente.

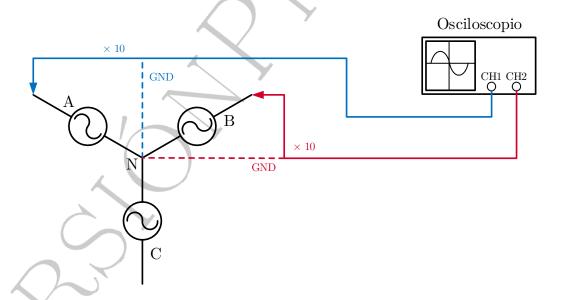


Figura 2: Conexión del osciloscopio a dos fases de la fuente simultáneamente.

3. Medir con el multímetro la tensión entre las fases AB, BC y CA (tensión de línea).

5. ACTIVIDADES

En esta sección se enlistan algunas de las consideraciones que se deben tomar al realizar el análisis de resultados.

- Analizar si el valor RMS medido para la tensión de fase es congruente al compararse con el valor de la amplitud de la onda de voltaje.
- ¿El valor medido de frecuencia de la red eléctrica corresponde al valor esperado? De no ser así, ¿la diferencia es significativa?
- Al analizarse las ondas de voltaje de fase simultáneamente en el osciloscopio se observa un desfasamiento. ¿De cuántos segundos y cuántos grados eléctricos es? ¿El desfasamiento medido es congruente con la teoría?
- De forma ideal, la magnitud de la tensión de línea es $\sqrt{3}$ veces mayor que la magnitud de tensión de fase. ¿Se cumple esta relación?

BIBLIOGRAFÍA RECOMENDADA

- [1] Hayt, W., Kemmerly, J., Durbin, S. (2011). Engineering circuit analysis. McGraw-Hill.
- [2] Alexander, C., Alexander, C. K., Sadiku, M. N. (2006). Fundamentals of electric circuits. Urban Media Comics.
- [3] Nahvi, M., Edminister, J. (2003). Schaum's outline of theory and problems of electric circuits. New York: McGraw-Hill.