
2019 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC 2019). Ixtapa, Mexico

Transient Analysis of an Induction Motor and its
Control System using Cosimulation

V. M. Jimenez-Mondragon, I. Lopez-Garcia,
R. Escarela-Perez and F. Gonzalez-Montañez
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hmujica@unam.mx

Abstract—A virtual test bench based on the cosimulation of
finite element analysis and circuit simulation has been applied
to evaluate controllers in three-phase induction motors. A finite
element model is used to carry out the electromagnetic analysis
of the induction machine. This model has the advantage of
considering a precise distribution of induced eddy-currents, the
material nonlinearity, space and time harmonics, and torque
pulsation. The speed and rotor magnetic flux norm tracking
problems are tackled with a nonlinear passivity-based control.
The results show the existence of an overexcitation problem in
the control action when the motor operates at full load and
nominal speed. This problem was not so evident in the state
space simulation, which confirms that the use of this cosimulation
platform represents a helpful and reliable starting point before
experimentally implementing the controller.

I. INTRODUCTION

Nowadays, electromagnetic devices have a wide variety
of applications among which are hybrid vehicles, magnetic
levitation systems, electric actuators, and wind turbines. The
design, control, and optimization of these systems are compli-
cated without the use of precise simulation tools. The use of
field-circuit coupled models stands out among others because
the results are similar to the real operating characteristics
of the system since the electromagnetic phenomenon of the
device is considered through the finite element (FE) model. It
also reduces the number of experimental prototypes that are
expensive in most cases [1].

A field-circuit coupled model simultaneously uses the mag-
netic field solver and circuit solver [2], [3], which provides an
accurate virtual prototype to address the control problem of
an induction motor modeled by finite elements. A simulation
platform is useful if it accurately represents reality, and is easy
to manipulate and implement. All these features are available
in the platform used in this work. The cosimulation of FE
analysis and circuit simulation has been used for decades to
address the control problem in electrical machines. Remark-
able works reported in the literature where cosimulation is
used can be found at [4]–[9].

On the other hand, the induction machine speed control is
of industrial interest due to the multiple processes in which it
is embedded. Currently, there are different strategies that allow

the control of induction motors such as: PID control [10], field-
oriented indirect control [11], passivity-based control (PBC)
[12], [13], field-oriented direct control [14], etc. The passivity-
based control reported in [12] is used in this work, because
of the high dynamic performance that can be achieved with
highly variable speed profiles.

The work is organized as follows. Section II presents the
field-circuit formulation to solve the induction motor problem
by Finite Element Method (FEM). The high-performance PBC
for speed and rotor magnetic flux norm tracking is briefly
treated in section III. Section IV explains the cosimulation of
the FE analysis and control system. Finally, the results for a
10 HP induction motor are presented and analyzed in section
V.

II. FIELD-CIRCUIT COUPLED FORMULATION

In general, the low-frequency transient problem of the motor
is described by the following discrete system of differential-
algebraic equations:

[D] {ẋ}+ [S] {x}+ {f} = 0 (1)

where ẋ = ∂x/dt and {x} is a state variables vector. The
damping matrix [D] and stiffness matrix [S] can be dependent
on the unknown x and time. {f} is an excitation vector where
the control signals (stator voltages) are incorporated.

The discrete system of the form given in (1) for the
cartesian field problem and field-circuit coupling equations
for solid (squirrel cage bars) and filamentary (stator windings)
conductors are presented in the next sections.

A. Nonlinear diffusion equation

The manipulation of Maxwell’s equations leads to the fol-
lowing nonlinear diffusion equation to solve the time-domain
2D-cartesian motor problem [15]:
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where Az is the only component of the magnetic vector
potential. Jfz , Jsz and vs are the current density in regions
with filamentary conductors, the current density in regions
with solid conductors and the potential difference between
the ends of the solid conductors, respectively. σ and leff are
the conductivity and the axial length, respectively. ν is the
reluctivity of the material and can be a nonlinear function of
the magnetic field.

Filamentary conductors are considered thin such that eddy-
currents are negligible. This way, each domain Ωf with cross-
section Λf has a uniform distribution of Nf series-connected
filamentary conductors, which carry a current If . Then, the
current density can be expressed as:

Jfz =
Nf if
Λf

(3)

Substitution of (3) into (2) leads to the boundary-value
problem for the cartesian magnetic field:
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(4)

Three domains of interest are considered in (4): non-
conductor, solid and filamentary regions. Each one of these
is found in an induction machine.

B. Space discretization
The FE equations in the different domains are obtained by

Galerkin’s approximation [16]. This method is based on the
minimization of an integral expression and is a special case
of the weighted residual method. The integral expression is:∫

WpRedS = 0 (5)

where Re is a residual, which is obtained by setting to cero
the partial differential equation (4). Shape functions ζi in
the Galerkin’s method are used to approximate the magnetic
vector potential in an element with a polynomial function of
the form:

Az =
∑

ai(t)ζi(x, y) (6)

The equation (4) can be expressed numerically by the FEM
as [17]:

−[S]{a} −
∑
s

[Ds]{ȧ}+
∑
f

[Sf ]if +
∑
s

[Ss]vs = 0 (7)

where ȧ = ∂a/dt. The matrices and vectors in (7) are defined
as follows:

Stiffness matrix:

[S]n×n =
∑
e

∫∫
Ωe
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Conductivity matrix:

[Ds]n×n =
∑
e

∫∫
Ωe

σζζT dxdy (9)

Winding vector in regions with filamentary conductors:

[Sf ]n =
Nf
Λf

∑
ef

∫∫
Ωef

ζdxdy (10)

Winding vector in regions with solid conductors:

[Ss]n =
σ

leff

∑
es

∫∫
Ωes

ζdxdy (11)

where n is the number of nodes in the FE mesh. The
stiffness and conductivity matrices contain information about
the geometry and physical properties of the motor. The solid
and filamentary winding vectors allow the interconnection of
the FE model with the external circuit and therefore with the
control stage.

C. Coupling equation: filamentary conductor

The unknowns in (7) to solve the field-circuit coupled
problem in regions with filamentary conductors are the mag-
netic vector potential and the current if in each winding.
The voltage-current relation for a winding is used as an
additional circuit equation. This can be expressed in terms
of the magnetic vector potencial as:

vf = rf if + leffNf
∂

∂t

∫∫
Ωf
Azdxdy

Λf
(12)

where rf is the dc winding resistance. This equation is
fundamental because it allows the coupling of the field model
with the external circuit and the control stage.The second
term on the right side in (12) is the induced voltage in the
filamentary winding. The FE discretization of the voltage-
current relation (12) is given by:

vf = rf if + [Df ]
T {ȧ} (13)

where:

[Df ]n =
leffNf

Λf

∑
ef

∫∫
Ωf

ζdxdy (14)

and it is obtained by using the polynomial approximation
of the magnetic vector potential defined in (6). The discrete
system in the general form defined in (1) for regions with
filamentary conductors is obtained through the voltage-current
relation (13) and the winding vector (10):
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where vf = vp − vq . The third term in (7) has been
incorporated in (15) to obtain a coupling block between the
field system with filamentary regions and the external circuit.

D. Coupling equation: solid conductor

The discrete system block for solid conductors is obtained
in this section. In the field problem (4) with solid conductor
regions the unknowns are the potential difference between the
conductor terminals vs and the magnetic vector potential. The
total current in a solid conductor is defined as follows:

it = ie + is (16)

where ie is the induced current and is is the source current.
Expressing the total current in terms of the state variables leads
to:

it = −σ
∫∫

Ωs

∂Az
∂t

dxdy +
σ

leff

∫∫
Ωs

(vp − vq)dxdy (17)

Substituting the polynomial approximation of the potential
given by (6) in (17) leads to the FE version of (16):

it = [Dm]
T {ȧ}+G(vp − vq) (18)

where:

[Dm]n =
∑
es

∫∫
Ωes

−σζdxdy (19)

and G is the conductance defined as:

G =
σΛs
leff

(20)

Λs is the cross section area of the region Ωs. From (18) and
(11), the field-circuit coupling block for solid conductors in
the general form defined by (1) is:
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E. Complete finite-element discrete system

The discrete blocks for the electromagnetic field system
(7), (15) and (21) are coupled through the magnetic vector
potential, the current in filamentary regions and the potencial
difference at the ends of the solid conductors. The discrete
block of the cartesian field problem can be expressed in matrix
form as follows:


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where vpf and vqf are the nodal voltages between the ends of
each winding f . These voltages allow the electromagnetic sys-
tem to be interconnected with the external circuit through the
control signals. vps and vqs are the nodal voltages between the
ends of each solid conductor s. The system (22) is asymmetric.
However, symmetry is recovered once it is discretized in the
time domain by the backward Euler method and linearized
with the Newton-Raphson method [17].

III. PASSIVITY-BASED CONTROL

Consider the nonlinear PBC for speed and rotor magnetic
flux norm tracking reported in [12], specifically limt→∞ |ω−
ωd| = 0 and limt→∞ |‖ψr‖ − ‖ψrd‖| = 0, where ωd is the
desired speed and ‖ψrd‖ is the desired norm of rotor magnetic
fluxes, under the following assumptions:

S.1 Stator currents Is, speed ω and rotor acceleration ω̇
are measured. These last two measurements will be
estimated by the differentiation methods evaluated in
[12].

S.2 All model parameters are known.
S.3 Load torque τL(t) is an unknown function.
S.4 The desired rotor speed ωd(t) is a bounded and twice

differentiable function.
S.5 The desired rotor magnetic flux norm ‖ψrd | is

a strictly positive, smooth and bounded exogenous
function.

Starting from the induction motor model ab, described in
[13] as a set of five differential equations; the state error and
its dynamics are defined as,

e =

 eIs
eψr

eω

 = x− xd =⇒ ė =

 ėIs
ėψr

ėω

 = ẋ− ẋd

(23)
where the state vector x , [ITs , ψ

T
r , ω]T ∈ R5.

Therefore, the desired state vector is set as xd ,
[ITsd, ψ

T
rd, ωd]

T . The structure of the control law applied to
stator voltages is given by
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Us = σİsd +
npLsr
Lr
Jωdψrd +

(
L2
srRr
L2
r

+Rs

)
Isd

−LsrRr
L2
r

ψrd −KIseIs , (24)

where a constant damping term KIs is included in the current
error eIs . The vector of desired stator currents is given by

Isd =
Lr

RrLsr

(
ψ̇rd − npωdJψrd +

Rr
Lr
ψrd

)
(25)

The desired time-varying rotor fluxes are obtained as a
dynamic system solution

ψ̇rd =

[
npωd +

Rr
npβ2

τd

]
Jψrd +

β̇

β
ψrd, ψrd (0) =

[
β
0

]
(26)

while the desired electromagnetic torque τd is defined as:

τd = Jω̇d +Bωd + τ̂L −Kωeω, (27)

where

τ̂L = −Kωi

∫
eωdt, Kωi > 0, τ̂L(0) = 0. (28)

The derivative of Isd required for the implementation of the
control law (24) is obtained analytically and is given by

İsd =
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Lsrnp

[(
τ̇d − 2τdβ̇

β

)
Jψrd +

(
τd
β2

)
J ψ̇rd

]

+
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[(
β̈β − β̇2

β2

)
ψrd +

(
β̇

β

)
ψ̇rd

]
+
ψ̇rd
Lsr

, (29)

as well as the derivative of τd defined by

τ̇d = Jω̈d +Bω̇d + ˙̂τL −Kω ėω. (30)

IV. FIELD-CIRCUIT COUPLED MODEL

The field-circuit coupling problem can be solved by the
strong coupling method or by the indirect method. The strong
coupling method solves simultaneously the FE system defined
by (22) and the external circuit equations with the control
stage at each time step. This method finds solutions for
greater precision and speed. However, specific codes have to
be implemented to solve the control problem.

The field-circuit coupling problem has also been solved
using the indirect method, where the field model (22) and
the external circuit with the control stage defined in section
III are solved as separate systems. In this case, the solution
of each system is used to excite the other one in an iterative
procedure. Therefore, each system is autonomously developed
with its own mathematical and numerical methods. The main
advantages of this method are flexibility and modularity be-
cause it allows the use of already tested circuit software.

This work is based on the cosimulation of the FE model and
the circuit system. The cosimulation of the whole problem
is performed in Matlab-Simulink environment. The stator
currents and position are calculated from the FE model and
these are the input variables at the controller. The control
outputs are the stator voltages, which in turn are the input
signals for the FE model. The implemented model in Matlab-
Simulink is shown in Fig. 1.

Fig. 1. Virtual test bench based on the cosimulation.

V. RESULTS AND DISCUSSION

Numerical tests were carried out for a model of a 10 HP,
2 poles, 50 Hz and 380 Vrms squirrel cage induction motor.
The rotor has a double squirrel cage with 20 aluminum bars.
The three-phase lap winding has 208 turns per phase. Fig. 2
shows the motor geometry, the FE meshing, and the boundary
conditions. The FE model was implemented in the well known
commercial software Altair Flux2D [18]. The mesh has 3464
second-order elements and 7235 nodes and it takes advantage
of antiperiodic boundary conditions. The nonlinearity of the
ferromagnetic material of the stator and the rotor cores is taken
into account with the FE transient model.

Fig. 2. Induction motor cross section [18].

Numerical tests involve the problem of speed and rotor
magnetic flux norm tracking. The flux norm is kept constant
at its nominal value of 1.7 Wb. The speed profile requires
accelerating the machine from a rest condition to its nominal
speed of 304 rad/s in 0.5 s and gradually decelerate until 44
rad/s from t=1 s. The motor starts at the no-load condition and
between 0.7 s and 1.2 s the nominal load torque of 24.7 N-m
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is applied. The tuning parameters for the PBC were considered
as: Kω = 5, Kωi = 125 y KIs = 210. The simulation was
carried out using a Runge-Kutta method with a fixed time step
equal to 0.0001s.

Speed tracking is shown in Fig. 3. Good performance of
the controller is observed with a mean square error of 0.8598
rad/s. The speed curve ωss, when the machine is modeled by
a simplified dq0 stationary model, is also shown in Fig. 3. It is
worth noticing that the dq0 model does not take into account
the nonlinearity of the ferromagnetic material and a precise
calculation of eddy-currents as in the case of the FE model.

Fig. 3. Speed tracking.

Voltage and current signals are shown in Fig. 4 and Fig.
5, respectively. It can be seen that the control signals are
adjusted both in magnitude and frequency to achieve the
desired speed. Notice that in the time interval between 0.7
s and 1 s, corresponding to nominal operating condition, the
supply voltages are up to 40.2% larger than the nominal peak
value of 537 V. This is an unreachable operating condition in
an experiment because it implies that the controller enters in a
saturation regime. Meanwhile, the currents exceed the nominal
peak value of 12.57 A by up to 9.7% in the same period of
time. This is not a problem because the motors are designed
to withstand an overload of 1.25 times their nominal current
for a long period of time.

Fig. 4. Control signals with the motor modeled by FEM.

The voltage and current values at phase a of the motor are
compared in Fig. 6 and Fig. 7, respectively. It can be seen that
the problem of critical over-excitation does not arise using
the state-space model because in the worst case the voltage

Fig. 5. Currents with the motor modeled by FEM.

exceeds by only 7.6% its nominal value. The difference in the
voltage magnitude is attributed to the material nonlinearity
considered in the cosimulation, in contrast with the linear
representation used with the state-space model. Another factor
is that speed is not a smooth signal when the machine is
modeled with FE, just like in a real motor. Then, the controller
tries to compensate for variations in speed, increasing the
level of excitation to the motor in order to reach the desired
speed at each instant of time. Voltage and speed signals could
be filtered, but a lot of relevant information is lost and the
advantage to use distributed models loses meaning.

Fig. 6. Phase a voltage curves: FEM vs state-space model.

Fig. 7. Phase a current curves: FEM vs state-space model.

Regarding the computational cost, the simulation was per-
formed on a computer with 64 GB of RAM, Intel Xeon
Processor 3.0 GHz and 16 cores. The real-time needed to
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complete the simulation was 39 hrs. It is well known that for
a distributed model such a FE model the CPU time is much
larger than for space-state models. However, some problems
required to work with precise models to obtain reliable results
as in the case of the problem addressed in this work.

VI. CONCLUSIONS

The virtual test bench based on the cosimulation of finite
element analysis and circuit simulation proves to be a powerful
and reliable tool to evaluate control strategies for induction
motors. The results show the importance of considering the
entire electromagnetic phenomenon in the machine through
a finite element model, when the motor operates above its
nominal values.

It should be emphasized that significant differences were
found in the results using the state-space model, which is
commonly used as a starting point to evaluate controllers when
compared with the finite-element model. This work highlights
that for certain conditions the results are not reliable and it is
recommended to resort to more sophisticated models before
conducting experimental tests, to ensure personnel safety.

The analysis tool is not limited to the problem of induc-
tion motor control. The idea can be applied to analyze and
solve problems in other types of machines with applications
for example in hybrid vehicles, home appliances, and wind
generation systems.
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de motores eléctricos,” Congreso Nacional de Control Automático,
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