

UNIDAD	DIVISIÓN	1 /	/ 2
AZCAPOTZALCO	CIENCIAS BÁSICAS E INGENIERÍA		
NOMBRE DEL PLAN MAESTRÍA EN CIENCIAS EN INGENIERÍA ELECTROMAGNÉTICA			
CLAVE	UNIDAD DE ENSEÑANZA APRENDIZAJE	CRED.	TIPO
1138099			
H. TEOR. 4.5	MÉTODOS NUMÉRICOS AVANZADOS EN	12	OPT.
	ELECTROMAGNETISMO DE BAJA FRECUENCIA		
H. PRACT. 3.0	SERIACIÓN	TRIMESTRE	
	AUTORIZACIÓN	II-	-VI

OBJETIVO GENERAL:

- Al finalizar el curso el alumno será capaz de:
 - 1. Aplicar las técnicas de post-procesamiento obtenidas del método del elemento finito para analizar problemas electromagnéticos de baja frecuencia.

CONTENIDO SINTÉTICO:

- 1. Voltajes y corrientes en sistemas de elementos finitos: El concepto de vector de devanado. Conductores filamentarios y masivos. Potenciales eléctricos y magnéticos.
- 2. Cálculo de inductancias y capacitancias usando soluciones de elementos finitos.
- 3. Repetición geométrica de dominios: periodicidad y anti-periodicidad. Dispositivos electromagnéticos alimentados con voltaje.
- 4. Cálculo de fuerza y pares electromagnéticos: Método de Coulomb y tensor de esfuerzos de Maxwell.
- 5. Acoplamiento de ecuaciones de circuitos eléctricos con las de campo electromagnético. Establecimiento sistemático de las ecuaciones de circuitos y acoplamiento con los conductores del modelo de elementos finitos.
- 6. Introducción a la solución de problemas con movimiento. Deslizamiento de mallas y el término de velocidad.

MODALIDADES DE CONDUCCIÓN DEL PROCESO DE ENSEÑANZA- APRENDIZAJE:

Clase teórica con participación activa del alumno y con apoyo de medios audiovisuales y computacionales. Las horas prácticas se dedicarán al desarrollo de proyectos, ejercicios y problemas.

MODALIDAD DE EVALUACIÓN:

La calificación final estará constituida por:

1.80 %, evaluaciones periódicas, consistentes en la resolución de problemas, ejercicios o preguntas conceptuales.

UNIVERSIDAD AUTONOMA METROPOLITANA

2.20%, desarrollo y solución de proyectos, ejercicios y problemas.

BIBLIOGRAFÍA NECESARIA O RECOMENDABLE:

- 1. Sheppard J. Salon. Finite Element Analysis of Electrical Machines, Springer (SIE), 2012.
- 2. Jian-Ming Jin. Finite Element Method in Electromagnetics, Wiley-IEEE, $3^{\rm rd}$ edition, 2014.
- 3. Gerard Meunier. The Finite Element Method for Electromagnetic Modeling, ISTE Ltd and John Wiley & Sons, 2008
- 4. K. J. Binns, P. J. Lawrenson and C. W. Trowbridge. The Analytical and Numerical Solution of Electric and Magnetic Fields, John Wiley & Sons, 1992.
- 5. Joao Bastos and Nelson Sadowski. Electromagnetic Modeling by Finite Element Methods, Marcel Dekker, 2003.
- M. V. K. Chari and Shepard. J. Salon. Numerical Methods in Electromagnetism, Academic Press, 1999.
- Ratnajeevan H. Hoole. Computer-Aided Analysis and Design of Electromagnetic Devices, Elsevier, 1989.
- 8. Peter P. Silvester and Ronald L. Ferrari. Finite Elements for Electrical Engineers, Cambridge, 3rd edition, 1996.